Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352521

RESUMO

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighboring cells and sequester nutrients. This natural product-mediated competition likely evolved in complex microbial communities that included viral pathogens. From this ecological context, we hypothesized that microbes secrete metabolites that "weaponize" natural pathogens (i.e., bacteriophages) to lyse their competitors. Indeed, we discovered a bacterial secondary metabolite that sensitizes other bacteria to phage infection. We found that this metabolite provides the producer (a Streptomyces sp.) with a fitness advantage over its competitor (Bacillus subtilis) by promoting phage infection. The phage-promoting metabolite, coelichelin, sensitized B. subtilis to a wide panel of lytic phages, and it did so by preventing the early stages of sporulation through iron sequestration. Beyond coelichelin, other natural products may provide phage-mediated competitive advantages to their producers-either by inhibiting sporulation or through yet-unknown mechanisms.

2.
Nat Commun ; 15(1): 576, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233386

RESUMO

The diversity of intrinsic traits of different organic matter molecules makes it challenging to predict how they, and therefore the global carbon cycle, will respond to climate change. Here we develop an indicator of compositional-level environmental response for dissolved organic matter to quantify the aggregated response of individual molecules that positively and negatively associate with warming. We apply the indicator to assess the thermal response of sediment dissolved organic matter in 480 aquatic microcosms along nutrient gradients on three Eurasian mountainsides. Organic molecules consistently respond to temperature change within and across contrasting climate zones. At a compositional level, dissolved organic matter in warmer sites has a stronger thermal response and shows functional reorganization towards molecules with lower thermodynamic favorability for microbial decomposition. The thermal response is more sensitive to warming at higher nutrients, with increased sensitivity of up to 22% for each additional 1 mg L-1 of nitrogen loading. The utility of the thermal response indicator is further confirmed by laboratory experiments and reveals its positive links to greenhouse gas emissions.

3.
Microbiome ; 11(1): 191, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626433

RESUMO

BACKGROUND: Freshwater sediment microbes are crucial decomposers that play a key role in regulating biogeochemical cycles and greenhouse gas emissions. They often exhibit a highly ordered structure along depth profiles. This stratification not only reflects redox effects but also provides valuable insights into historical transitions, as sediments serve as important archives for tracing environmental history. The Anthropocene, a candidate geological epoch, has recently garnered significant attention. However, the human impact on sediment zonation under the cover of natural redox niches remains poorly understood. Dam construction stands as one of the most far-reaching anthropogenic modifications of aquatic ecosystems. Here we attempted to identify the ecological imprint of damming on freshwater sediment microbiome. RESULTS: We conducted a year-round survey on the sediment profiles of Lake Chaohu, a large shallow lake in China. Through depth-discrete shotgun metagenomics, metataxonomics, and geophysiochemical analyses, we unveiled a unique prokaryotic hierarchy shaped by the interplay of redox regime and historical damming (labeled by the 137Cs peak in AD 1963). Dam-induced initial differentiation was further amplified by nitrogen and methane metabolism, forming an abrupt transition governing nitrate-methane metabolic interaction and gaseous methane sequestration depth. Using a random forest algorithm, we identified damming-sensitive taxa that possess distinctive metabolic strategies, including energy-saving mechanisms, unique motility behavior, and deep-environment preferences. Moreover, null model analysis showed that damming altered microbial community assembly, from a selection-oriented deterministic process above to a more stochastic, dispersal-limited one below. Temporal investigation unveiled the rapid transition zone as an ecotone, characterized by high species richness, low community stability, and emergent stochasticity. Path analysis revealed the observed emergent stochasticity primarily came from the high metabolic flexibility, which potentially contributed to both ecological and statistical neutralities. CONCLUSIONS: We delineate a picture in which dam-induced modifications in nutrient availability and sedimentation rates impact microbial metabolic activities and generate great changes in the community structure, assembly, and stability of the freshwater sediment microbiome. These findings reflect profound ecological and biogeochemical ramifications of human-Earth system interactions and help re-examine the mainstream views on the formation of sediment microbial stratification. Video Abstract.


Assuntos
Efeitos Antropogênicos , Ecossistema , Humanos , Lagos , China , Planeta Terra
4.
Ecol Evol ; 13(8): e10403, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560179

RESUMO

Biologists have long sought to quantify the number of species on Earth. Often missing from these efforts is the contribution of microorganisms, the smallest but most abundant form of life on the planet. Despite recent large-scale sampling efforts, estimates of global microbial diversity span many orders of magnitude. It is important to consider how speciation and extinction over the last 4 billion years constrain inventories of biodiversity. We parameterized macroevolutionary models based on birth-death processes that assume constant and universal speciation and extinction rates. The models reveal that richness beyond 1012 species is feasible and in agreement with empirical predictions. Additional simulations suggest that mass extinction events do not place hard limits on modern-day microbial diversity. Together, our study provides independent support for a massive global-scale microbiome while shedding light on the upper limits of life on Earth.

5.
ISME J ; 17(8): 1315-1325, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286738

RESUMO

Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Banco de Sementes , Bactérias/genética , Esporos Bacterianos/genética , Mutação
6.
mBio ; 14(3): e0018223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042671

RESUMO

Spore-forming bacteria are prevalent in mammalian guts and have implications for host health and nutrition. The production of dormant spores is thought to play an important role in the colonization, persistence, and transmission of these bacteria. Spore formation also modifies interactions among microorganisms such as infection by phages. Recent studies suggest that phages may counter dormancy-mediated defense through the expression of phage-carried sporulation genes during infection, which can alter the transitions between active and inactive states. By mining genomes and gut-derived metagenomes, we identified sporulation genes that are preferentially carried by phages that infect spore-forming bacteria. These included genes involved in chromosome partitioning, DNA damage repair, and cell wall-associated functions. In addition, phages contained homologs of sporulation-specific transcription factors, notably spo0A, the master regulator of sporulation, which could allow phages to control the complex genetic network responsible for spore development. Our findings suggest that phages could influence the formation of bacterial spores with implications for the health of the human gut microbiome, as well as bacterial communities in other environments. IMPORTANCE Phages acquire bacterial genes and use them to alter host metabolism in ways that enhance phage fitness. To date, most auxiliary genes replace or modulate enzymes that are used by the host for nutrition or energy production. However, phage fitness is affected by all aspects of host physiology, including decisions that reduce the metabolic activity of the cell. Here, we focus on endosporulation, a complex and ancient form of dormancy found among the Bacillota that involves hundreds of genes. By coupling homology searches with host classification, we identified 31 phage-carried homologs of sporulation genes that are mostly limited to phages infecting spore-forming bacteria. Nearly one-third of the homologs recovered were regulatory genes, suggesting that phages may manipulate host genetic networks by tapping into their control elements. Our findings also suggest a mechanism by which phages can overcome the defensive strategy of dormancy, which may be involved in coevolutionary dynamics of spore-forming bacteria.


Assuntos
Bacteriófagos , Animais , Humanos , Bacteriófagos/genética , Redes Reguladoras de Genes , Bactérias/genética , Esporos Bacterianos , Fatores de Transcrição/genética , Mamíferos/genética
7.
J Theor Biol ; 561: 111413, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36639023

RESUMO

Organisms have evolved different mechanisms in response to periods of environmental stress, including dormancy - a reversible state of reduced metabolic activity. Transitions to and from dormancy can be random or induced by changes in environmental conditions. Prior theoretical work has shown that stochastic transitioning between active and dormant states at the individual level can maximize fitness at the population level. However, such theories of 'bet-hedging' strategies typically neglect certain physiological features of transitions to dormancy, including time lags to gain protective benefits. Here, we construct and analyze a dynamic model that couples stochastic changes in environmental state with the population dynamics of organisms that can initiate dormancy after an explicit time delay. Stochastic environments are simulated using a multi-state Markov chain through which the mean and variance of environmental residence time can be adjusted. In the absence of time lags (or in the limit of very short lags), we find that bet-hedging strategy transition probabilities scale inversely with the mean environmental residence times, consistent with prior theory. We also find that increasing delays in dormancy decreases optimal transitioning probabilities, an effect that can be influenced by the correlations of environmental noise. When environmental residence times - either good or bad - are uncorrelated, the maximum population level fitness is obtained given low levels of transitioning between active and dormant states. However when environmental residence times are correlated, optimal dormancy initiation and termination probabilities increase insofar as the mean environmental persistent time is longer than the delay to reach dormancy. We also find that bet hedging is no longer advantageous when delays to enter dormancy exceed the mean environmental residence times. Altogether, these results show how physiological limits to dormancy and environmental dynamics shape the evolutionary benefits and even viability of bet hedging strategies at population scales.


Assuntos
Evolução Biológica , Cadeias de Markov , Probabilidade , Dinâmica Populacional
8.
Trends Microbiol ; 31(3): 242-253, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280521

RESUMO

Movement is critical for the fitness of organisms, both large and small. It dictates how individuals acquire resources, evade predators, exchange genetic material, and respond to stressful environments. Movement also influences ecological and evolutionary dynamics at higher organizational levels, such as populations and communities. However, the links between individual motility and the processes that generate and maintain microbial diversity are poorly understood. Movement ecology is a framework linking the physiological and behavioral properties of individuals to movement patterns across scales of space, time, and biological organization. By synthesizing insights from cell biology, ecology, and evolution, we expand theory from movement ecology to predict the causes and consequences of microbial movements.


Assuntos
Ecologia , Movimento , Humanos , Ecossistema
9.
Environ Microbiol ; 25(1): 150-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310117
10.
Ecology ; 104(2): e3893, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208193

RESUMO

Microorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered soils. Thus, microbial traits that promote microbial success in different moisture environments also promote plant success in these same environments. Our results demonstrate that byproduct benefits, a concept developed to explain the evolution of cooperation in pairwise mutualisms, can also extend to interactions between plants and nonsymbiotic soil microbes.


Assuntos
Plantas , Solo , Plantas/microbiologia , Bactérias , Microbiologia do Solo
11.
Microbiol Spectr ; 10(4): e0156621, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943259

RESUMO

Methane oxidizing microorganisms (methanotrophs) are ubiquitous in the environment and represent a major sink for the greenhouse gas methane (CH4). Recent studies have demonstrated methanotrophs are abundant and contribute to CH4 dynamics in caves. However, very little is known about what controls the distribution and abundance of methanotrophs in subterranean ecosystems. Here, we report a survey of soils collected from > 20 caves in North America to elucidate the factors shaping cave methanotroph communities. Using 16S rRNA sequencing, we recovered methanotrophs from nearly all (98%) of the samples, including cave sites where CH4 concentrations were at or below detection limits (≤0.3 ppmv). We identified a core methanotroph community among caves comprised of high-affinity methanotrophs. Although associated with local-scale mineralogy, methanotroph composition did not systematically vary between the entrances and interior of caves, where CH4 concentrations varied. We also observed methanotrophs are able to disperse readily between cave systems showing these organisms have low barriers to dispersal. Lastly, the relative abundance of methanotrophs was positively correlated with cave-air CH4 concentrations, suggesting these microorganisms contribute to CH4 flux in subterranean ecosystems. IMPORTANCE Recent observations have shown the atmospheric greenhouse gas methane (CH4) is consumed by microorganisms (methanotrophs) in caves at rates comparable to CH4 oxidation in surface soils. Caves are abundant in karst landscapes that comprise 14% of Earth's land surface area, and therefore may represent a potentially important, but overlooked, CH4 sink. We sampled cave soils to gain a better understand the community composition and structure of cave methanotrophs. Our results show the members of the USC-γ clade are dominant in cave communities and can easily disperse through the environment, methanotroph relative abundance was correlated with local scale mineralogy of soils, and the relative abundance of methanotrophs was positively correlated with CH4 concentrations in cave air.


Assuntos
Gases de Efeito Estufa , Microbiologia do Solo , Ecossistema , Metano/análise , RNA Ribossômico 16S/genética , Solo/química
12.
Environ Sci Technol ; 56(14): 10504-10516, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35737964

RESUMO

Dissolved organic matter (DOM) is a large and complex mixture of molecules that fuels microbial metabolism and regulates biogeochemical cycles. Individual DOM molecules have unique functional traits, but how their assemblages vary deterministically under global change remains poorly understood. Here, we examine DOM and associated bacteria in 300 aquatic microcosms deployed on mountainsides that span contrasting temperatures and nutrient gradients. Based on molecular trait dimensions of reactivity and activity, we partition the DOM composition into labile-active, recalcitrant-active, recalcitrant-inactive, and labile-inactive fractions and quantify the relative influences of deterministic and stochastic processes governing the assembly of each. At both subtropical and subarctic study sites, the assembly of labile or recalcitrant molecules in active fractions is primarily governed by deterministic processes, while stochastic processes are more important for the assembly of molecules within inactive fractions. Surprisingly, the importance of deterministic selection increases with global change gradients for recalcitrant molecules in both active and inactive fractions, and this trend is paralleled by changes in the deterministic assembly of microbial communities and environmental filtering, respectively. Together, our results highlight the shift in focus from potential reactivity to realized activity and indicate that active and inactive fractions of DOM assemblages are structured by contrasting processes, and their recalcitrant components are consistently sensitive to global change. Our study partitions the DOM molecular composition across functional traits and links DOM with microbes via a shared ecological framework of assembly processes. This integrated approach opens new avenues to understand the assembly and turnover of organic carbon in a changing world.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Bactérias/metabolismo , Carbono/metabolismo
13.
Nat Commun ; 13(1): 3600, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739132

RESUMO

Microbes regulate the composition and turnover of organic matter. Here we developed a framework called Energy-Diversity-Trait integrative Analysis to quantify how dissolved organic matter and microbes interact along global change drivers of temperature and nutrient enrichment. Negative and positive interactions suggest decomposition and production processes of organic matter, respectively. We applied this framework to manipulative field experiments on mountainsides in subarctic and subtropical climates. In both climates, negative interactions of bipartite networks were more specialized than positive interactions, showing fewer interactions between chemical molecules and bacterial taxa. Nutrient enrichment promoted specialization of positive interactions, but decreased specialization of negative interactions, indicating that organic matter was more vulnerable to decomposition by a greater range of bacteria, particularly at warmer temperatures in the subtropical climate. These two global change drivers influenced specialization of negative interactions most strongly via molecular traits, while molecular traits and bacterial diversity similarly affected specialization of positive interactions.


Assuntos
Clima , Matéria Orgânica Dissolvida , Bactérias/genética , Temperatura
14.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35511143

RESUMO

Fluctuations in the availability of resources constrain the growth and reproduction of individuals, which subsequently affects the evolution of their respective populations. Many organisms contend with such fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e. a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. The ability of these bacteria to enter a dormant state increased the accumulation of genetic diversity over time and altered the trajectory of mutations, findings that were recapitulated using simulations based on a mathematical model of evolutionary dynamics. While the ability to form a seed bank did not alter the degree of negative selection, we found that it consistently altered the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank can affect the direction and rate of molecular evolution over an extended evolutionary timescale.


Assuntos
Bacillus subtilis , Banco de Sementes , Bacillus subtilis/genética , Evolução Molecular , Humanos
15.
mSphere ; 7(1): e0067221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138123

RESUMO

The degree to which independent populations subjected to identical environmental conditions evolve in similar ways is a fundamental question in evolution. To address this question, microbial populations are often experimentally passaged in a given environment and sequenced to examine the tendency for similar mutations to repeatedly arise. However, there remains the need to develop an appropriate statistical framework to identify genes that acquired more mutations in one environment than in another (i.e., divergent evolution), genes that serve as genetic candidates of adaptation. Here, we develop a mathematical model to evaluate evolutionary outcomes among replicate populations in the same environment (i.e., parallel evolution), which can then be used to identify genes that contribute to divergent evolution. Applying this approach to data sets from evolve-and-resequence experiments, we found that the distribution of mutation counts among genes can be predicted as an ensemble of independent Poisson random variables with zero free parameters. Building on this result, we propose that the degree of divergent evolution at a given gene between populations from two different environments can be modeled as the difference between two Poisson random variables, known as the Skellam distribution. We then propose and apply a statistical test to identify specific genes that contribute to divergent evolution. By focusing on predicting patterns among replicate populations in a given environment, we are able to identify an appropriate test for divergence between environments that is grounded in first principles. IMPORTANCE There is currently no universally accepted framework for identifying genes that contribute to molecular divergence between microbial populations in different environments. To address this absence, we developed a null model to describe the distribution of mutation counts among genes. We find that divergent evolution within a given gene can be modeled as the absolute difference in the total number of mutations observed between two environments. This quantity is effectively captured by a probability distribution known as the Skellam distribution, providing an appropriate statistical test for researchers seeking to identify the set of genes that contribute to divergent evolution in microbial evolution experiments.


Assuntos
Adaptação Fisiológica , Adaptação Fisiológica/genética , Mutação
16.
Mol Ecol ; 30(20): 5119-5136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402116

RESUMO

Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.


Assuntos
Microbiota , Microbiologia do Solo , Archaea/genética , Secas , Microbiota/genética , Solo
17.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385301

RESUMO

Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.


Assuntos
Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Mutação , Especificidade da Espécie
18.
Nat Commun ; 12(1): 4807, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376641

RESUMO

Across the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing information and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.


Assuntos
Dormência de Plantas/fisiologia , Banco de Sementes , Plântula/fisiologia , Sementes/fisiologia , Ecossistema , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Humanos , Luz , Dormência de Plantas/genética , Plântula/genética , Sementes/genética , Temperatura
19.
Mol Biol Evol ; 38(10): 4532-4545, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34255090

RESUMO

Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that although the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Mutação
20.
Ecol Lett ; 24(11): 2328-2338, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34322982

RESUMO

Coexisting species often exhibit negative frequency dependence due to mechanisms that promote population growth and persistence when rare. These stabilising mechanisms can maintain diversity through interspecific niche differences, but also through life-history strategies like dormancy that buffer populations in fluctuating environments. However, there are few tests demonstrating how seed banks contribute to long-term community dynamics and the maintenance of diversity. Using a multi-year, high-frequency time series of bacterial community data from a north temperate lake, we documented patterns consistent with stabilising coexistence. Bacterial taxa exhibited differential responses to seasonal environmental conditions, while seed bank dynamics helped maintain diversity over less-favourable winter periods. Strong negative frequency dependence in rare, but metabolically active, taxa suggested a role for biotic interactions in promoting coexistence. Together, our results provide field-based evidence that niche differences and seed banks contribute to recurring community dynamics and the long-term maintenance of diversity in nature.


Assuntos
Bactérias , Banco de Sementes , Lagos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...